Published in

Elsevier, Solar Energy Materials and Solar Cells, 7(94), p. 1263-1269

DOI: 10.1016/j.solmat.2010.03.022

Links

Tools

Export citation

Search in Google Scholar

Wide-bandgap CuIn1-xAlxSe2 thin films deposited on transparent conducting oxides

Journal article published in 2010 by J. López García, C. Maffiotte, C. Guillén ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The development of wide-bandgap materials deposited on transparent conducting oxides for high efficiency and low cost semitransparent photovoltaic devices or tandem cells is becoming important in the last few years. CuIn1−xAlxSe2 (CIAS) thin films with bandgap above 1.95eV for 0.7≤x≤0.9 were deposited onto bare and two different (tin-doped indium oxide, ITO and aluminium-doped zinc oxide, AZO) coated glass substrates by a two stage process consisting of the selenization of metallic precursor layers. Polycrystalline CIAS thin films orientated preferentially along the (112) plane with chalcopyrite structure were obtained. The bandgap energy increased no linearly with the Al addition. X-ray diffractograms showed the coexistence of several CIAS phases. Optical, structural and composition analysis revealed that the ITO and AZO substrates promote not only the incorporation of Se, but also a more homogenous distribution in depth regarding the CIAS samples on bare glass, and acted like a barrier to the oxidation from the glass substrate.