Published in

American Astronomical Society, Astrophysical Journal, 1(738), p. 14, 2011

DOI: 10.1088/0004-637x/738/1/14

Links

Tools

Export citation

Search in Google Scholar

Lunar Dust Grain Charging by Electron Impact: Dependence of the Surface Potential on the Grain Size

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The secondary electron emission is believed to play an important role for the dust charging at and close to the lunar surface. However, our knowledge of emission properties of the dust results from model calculations and rather rare laboratory investigations. The present paper reports laboratory measurements of the surface potential on Lunar Highlands Type regolith simulants with sizes between 0.3 and 3 μm in an electron beam with energy below 700 eV. This investigation is focused on a low-energy part, i.e., ≤100 eV. We found that the equilibrium surface potential of this simulant does not depend on the grain size in our ranges of grain dimensions and the beam energies, however, it is a function of the primary electron beam energy. The measurements are confirmed by the results of the simulation model of the secondary emission from the spherical samples. Finally, we compare our results with those obtained in laboratory experiments as well as those inferred from in situ observations.