Published in

American Chemical Society, The Journal of Physical Chemistry A, 12(118), p. 2360-2366, 2014

DOI: 10.1021/jp500915c

Links

Tools

Export citation

Search in Google Scholar

Influence of Substituent Effects on the Formation of P···Cl Pnicogen Bonds or Halogen Bonds

Journal article published in 2014 by Janet E. Del Bene ORCID, Ibon Alkorta ORCID, José Elguero
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ab initio MP2/aug'-cc-pVTZ calculations have been carried out in search of equilibrium structures with P···Cl pnicogen bonds or halogen bonds on the potential energy surfaces H2FP:ClY for Y = F, NC, Cl, CN, CCH, CH3, and H. Three different types of halogen-bonded complexes with traditional, chlorine-shared, and ion-pair bonds have been identified. Two different pnicogen-bonded complexes have also been found on these surfaces. The most electronegative substituents F and NC form only halogen-bonded complexes, while the most electropositive substituents CH3 and H form only pnicogen-bonded complexes. The halogen-bonded complexes involving the less electronegative groups Cl and CN are more stable than the corresponding pnicogen-bonded complexes, while the pnicogen-bonded complexes with CCH are more stable than the corresponding halogen-bonded complex. Traditional halogen-bonded complexes are stabilized by charge transfer from the P lone pair to the Cl-A σ* orbital, where A is the atom of Y directly bonded to Cl. Charge transfer from the Cl lone pair to the P-F σ* orbital stabilizes pnicogen-bonded complexes. As a result, the H2FP unit becomes positively charged in halogen-bonded complexes and negatively charged in pnicogen-bonded complexes. Spin-spin coupling constants (1X)J(P-Cl) for complexes with traditional halogen bonds increase with decreasing P-Cl distance, reach a maximum value for complexes with chlorine-shared halogen bonds, and then decrease and change sign when the bond is an ion-pair bond. (1p)J(P-Cl) coupling constants across pnicogen bonds tend to increase with decreasing P-Cl distance.