Published in

Institute of Electrical and Electronics Engineers, IEEE International Conference on Acoustics Speech and Signal Processing

DOI: 10.1109/icassp.2008.4517556

Links

Tools

Export citation

Search in Google Scholar

Robust Subspace-based Fundamental Frequency Estimation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The problem of fundamental frequency estimation is considered in the context of signals where the frequencies of the harmonics are not exact integer multiples of a fundamental frequency. This frequently occurs in audio signals produced by, for example, stiff-stringed musical instruments, and is sometimes referred to as inharmonicity. We derive a novel robust method based on the subspace orthogonality property of MUSIC and show how it may be used for analyzing audio signals. The proposed method is both more general and less complex than a straight-forward implementation of a parametric model of the inharmonicity derived from a physical instrument model. Additionally, it leads to more accurate estimates of the individual frequencies than the method based on the parametric inharmonicity model and a reduced bias of the fundamental frequency compared to the perfectly harmonic model.