Published in

Springer (part of Springer Nature), Journal of Molecular Modeling, 3(18), p. 937-945

DOI: 10.1007/s00894-011-1131-3

Links

Tools

Export citation

Search in Google Scholar

Time-dependent density functional theory study on the electronic excited-state hydrogen bonding of the chromophore coumarin 153 in a room-temperature ionic liquid

Journal article published in 2011 by Dandan Wang, Ce Hao, Se Wang ORCID, Hong Dong, Jieshan Qiu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the present work, in order to investigate the electronic excited-state intermolecular hydrogen bonding between the chromophore coumarin 153 (C153) and the room-temperature ionic liquid N,N-dimethylethanolammonium formate (DAF), both the geometric structures and the infrared spectra of the hydrogen-bonded complex C153-DAF(+) in the excited state were studied by a time-dependent density functional theory (TDDFT) method. We theoretically demonstrated that the intermolecular hydrogen bond C(1) = O(1)···H(1)-O(3) in the hydrogen-bonded C153-DAF(+) complex is significantly strengthened in the S(1) state by monitoring the spectral shifts of the C=O group and O-H group involved in the hydrogen bond C(1) = O(1)···H(1)-O(3). Moreover, the length of the hydrogen bond C(1) = O(1)···H(1)-O(3) between the oxygen atom and hydrogen atom decreased from 1.693 Å to 1.633 Å upon photoexcitation. This was also confirmed by the increase in the hydrogen-bond binding energy from 69.92 kJ mol(-1) in the ground state to 90.17 kJ mol(-1) in the excited state. Thus, the excited-state hydrogen-bond strengthening of the coumarin chromophore in an ionic liquid has been demonstrated theoretically for the first time.