Published in

American Scientific Publishers, Sensor Letters, 1(3), p. 42-48, 2005

DOI: 10.1166/sl.2005.003

Links

Tools

Export citation

Search in Google Scholar

Sensing of Flow and Shear Stress Using Fluorescent Molecular Rotors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular rotors are fluorescent molecules with two competing pathways of deexcitation: They return from the excited singlet state to the ground state either through fluorescence or through nonradiative intramolecular rotation. Molecular rotors are known as viscosity sensors, because intramolecular rotation rate depends on the viscosity of the solvent. In this study, we describe a new observation that the emission intensity of certain molecular rotors with hydrophilic head groups is elevated in fluids under shear. This intensity increase is dependent on both fluid velocity and vis-cosity. Statistically significant intensity increase was observed at fluid velocities as low as 0.6 mm/s. Using fiberoptics, local flow profiles could be probed. Measuring emission intensity of molecular rotors in sheared fluids may lead to the development of new shear field sensors, allowing real-time measurement of shear and flow without disturbing the fluid.