Published in

American Astronomical Society, Astronomical Journal, 3(137), p. 3668-3684, 2009

DOI: 10.1088/0004-6256/137/3/3668

Links

Tools

Export citation

Search in Google Scholar

Star Formation History in the Small Magellanic Cloud: The Case of NGC 602

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Deep Hubble Space Telescope/Advanced Camera for Surveys photometry of the young cluster NGC 602, located in the remote low-density "wing" of the Small Magellanic Cloud (SMC), reveals numerous pre-main-sequence (PMS) stars as well as young stars on the main sequence. The resolved stellar content thus provides a basis for studying the star formation history (SFH) into recent times and constraining several stellar population properties, such as the present-day mass function (PDMF), the initial mass function, and the binary fraction. To better characterize the PMS population, we present a new set of model stellar evolutionary tracks for this evolutionary phase with metallicity appropriate for the SMC (Z = 0.004). We use a stellar population synthesis code, which takes into account a full range of stellar evolution phases to derive our best estimate for the SFH in the region by comparing observed and synthetic color-magnitude diagrams. The derived PDMF for NGC 602 is consistent with that resulting from the synthetic diagrams. The star formation rate in the region has increased with time on a scale of tens of Myr, reaching (0.3-0.7) × 10–3 M ☉ yr–1 in the last 2.5 Myr, comparable to what is found in Galactic OB associations. Star formation is most complete in the main cluster but continues at moderate levels in the gas-rich periphery of the nebula.