Published in

Nature Research, Nature Communications, 1(4), 2013

DOI: 10.1038/ncomms2471

Links

Tools

Export citation

Search in Google Scholar

Transferring a synthetic gene circuit from yeast to mammalian cells

Journal article published in 2013 by Dmitry Nevozhay, Tomasz Zal ORCID, Gábor Balázsi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The emerging field of synthetic biology builds gene circuits for scientific, industrial, and therapeutic needs. Adaptability of synthetic gene circuits across different organisms could enable a synthetic biology pipeline, where circuits are designed in silico, characterized in microbes and reimplemented in mammalian settings for practical usage. However, the processes affecting gene circuit adaptability have not been systematically investigated. Here we construct a mammalian version of a negative feedback-based “linearizer” gene circuit previously developed in yeast. The first naïve mammalian prototype was non-functional, but a computational model suggested that we could recover function by improving gene expression and protein localization. After rationally developing and combining new parts as the model suggested, we regained function and could tune target gene expression in human cells linearly and precisely as in yeast. The steps we have taken should be generally relevant for transferring any gene circuit from yeast into mammalian cells.