Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Environmental Science and Technology, 17(46), p. 9681-9689, 2012

DOI: 10.1021/es301539b

Links

Tools

Export citation

Search in Google Scholar

Factors Influencing Legacy Pollutant Accumulation in Alpine Osprey: Biology, Topography, Or Melting Glaciers?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Persistent organic pollutants (POPs) can be transported long distances and deposited into alpine environments via cold trapping and snow scavenging processes. Here we examined biotic and abiotic factors determining contaminant variability of wildlife in alpine ecosystems. We measured POPs in eggs and plasma of an apex predator, the osprey (Pandion haliaetus) breeding in 15 mountainous watersheds across a broad latitudinal, longitudinal and altitudinal range in western Canada. After accounting for proximate biotic factors such as trophic level (δ(15)N) and carbon source (δ(13)C), variability in contaminant concentrations, including ΣDDT (sum of trichlorodiphenylethane-related compounds), toxaphene, hexachlorobenzene (HCB), total chlordane, and ΣPCBs (polychlorinated biphenyls) in osprey tissues was explained by interactions among relative size of watersheds, water bodies, elevation, and glacial input. ΣDDT in nestling plasma, for example, decreased with lake elevation, probably as a result of local past inputs from agricultural or public health usage at lower altitude sites. In contrast, toxaphene, never used as an insecticide in western Canada, increased with elevation and year-round snow and ice cover in both plasma and eggs, indicating long-range atmospheric sources as dominant for toxaphene. Lower chlorinated PCBs in plasma tended to decrease with elevation and ice cover consistent with published data and model outcomes. Temporal trends of POPs in osprey eggs are coincident with some modeled predictions of release from melting glaciers due to climate change. Currently we suggest that contaminants largely are released through annual snowpack melt and deposited in large lower elevation lakes, or some smaller lakes with poor drainage. Our study highlights the importance of understanding how biological processes integrate physical when studying the environmental chemistry of wildlife.