Dissemin is shutting down on January 1st, 2025

Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (450), 1996

DOI: 10.1557/proc-450-111

Links

Tools

Export citation

Search in Google Scholar

Spontaneous and Stimulated Intersubband Emission Under Optical Pumping

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTWe have investigated the mid-infrared spontaneous and stimulated emission between confined subbands in the conduction band of GaAs/AlGaAs quantum wells. The carriers which give rise to the intersubband emission are excited in the upper subbands using an intersubband optical pumping in coupled asymmetric quantum wells. The quantum wells are designed using phonon engineering in order to obtain population inversion between the second and first excited subband. This is obtained by adjusting the subband energy spacing between E2 and E1 close to the optical phonon energy which in turn allows an efficient relaxation. We have first observed intersubband spontaneous emission between E3 and E2 at 14 μm using an intersubband pumping with a CO2 laser in resonance with the E1-E3 transition. In a second set of experiments, the quantum wells are embedded in an infrared waveguide. We have measured the stimulated intersubband gain using a picosecond two-color free electron laser. The first color bleaches the E1-E3 transition and provides the population inversion. The intersubband stimulated gain is measured versus the waveguide length and photon energy. Stimulated gains ≈ 80 cm−1 are reported thus demonstrating that laser emission under optical pumping appears feasible in optimized structures. Finally, we show that intersubband emission can also be observed in quantum wells using an interband optical pumping.