Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 15(57), p. 6584-6589, 2009

DOI: 10.1021/jf9003994

Links

Tools

Export citation

Search in Google Scholar

Protectivity of Blue Honeysuckle Extract against Oxidative Human Endothelial Cells and Rat Hepatocyte Damage

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of Lonicera caerulea L. (blue honeysuckle) phenolic fraction (18.5% anthocyanins) on cell viability and against oxidative damage in low density lipoproteins (oxLDL), in rat microsomes and in primary cultures of rat hepatocytes and human umbilical vein endothelial cells (HUVEC), was tested. The phenolic fraction was nontoxic to rat hepatocytes and HUVEC at tested concentrations (1-1000 microg/mL) and time intervals up to 24 h inclusive. Phenolic fraction inhibited rat liver microsome peroxidation, induced by tert-butyl hydroperoxide (tBH), with IC(50) values of 160 +/- 20 microg/mL. The fraction at 0.5, 1.0, and 2.0 microg/mL delayed LDL oxidation, induced by Cu(2+), by 130 +/- 20%, 200 +/- 30%, and 400 +/- 10%, respectively. The treatment of HUVEC with oxidatively modified LDL induced an increase in lactate dehydrogenase (LDH) leakage and thiobarbituric acid reactive substances (TBARS) formation, and resulted in lower formazan formation from 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) uptake, most pronounced for 200 microg/mL (24 h oxidation) after 2 h of incubation. The protective effect of the phenolic fraction against cell damage caused by oxLDL was noted at 0.1 microg/mL for HUVEC and against tBH at 1000 microg/mL for both HUVEC and hepatocytes. The observed protective effects were probably due to the antioxidant properties of L. caerulea constituents, mainly anthocyanins. Microsome peroxidation and LDL oxidation inhibition results provide promising perspectives into the prevention of some oxidative stress-associated diseases. Other data are important in in vitro systems but seem to be accidental in vivo.