Published in

Wiley, Biotechnology Progress, 2(20), p. 457-466, 2008

DOI: 10.1021/bp034197l

Links

Tools

Export citation

Search in Google Scholar

Hollow-Fiber Enzyme Reactor Operating under Nonisothermal Conditions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A hollow-fiber enzyme reactor, operating under isothermal and nonisothermal conditions, was built employing a polypropylene hollow fiber onto which beta-galactosidase was immobilized. Hexamethylenediamine and glutaraldehyde were used as spacer and coupling agent, respectively. Glucose production was studied as a function of temperature, substrate concentration, and size of the transmembrane temperature gradient. The actual average temperature differences across the polypropylene fiber, to which reference was done to evaluate the effect of the nonisothermal conditions, were calculated by means of a mathematical approach, which made it possible to know, using computer simulation, the radial and axial temperature profiles inside the bioreactor and across the membrane. Percent activity increases, proportional to the size of the temperature gradients, were found when the enzyme activities under nonisothermal conditions were compared to those measured under comparable isothermal conditions. Percent reductions of the production times, proportional to the applied temperature gradients, were also calculated. The advantage of employing nonisothermal bioreactors in biotechnological industrial process was discussed.