Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 31(112), p. 9456-9466, 2008

DOI: 10.1021/jp804018y

Links

Tools

Export citation

Search in Google Scholar

Special Pair Dance and Partner Selection: Elementary Steps in Proton Transport in Liquid Water

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Conditional and time-dependent radial distribution functions reveal the details of the water structure surrounding the hydronium during the proton mobility process. Using this methodology for classical multistate empirical valence bond (MS-EVB) and ab initio molecular dynamics trajectories, as well as quantal MS-EVB trajectories, we supply statistical proof that proton hops in liquid water occur by a transition from the H3O+[3H2O] Eigen-complex, via the H5O2+ Zundel-complex, to a H3O+[3H2O] centered on a neighboring water molecule. In the "resting period" before a transition, there is a distorted hydronium with one of its water ligands at a shorter distance and another at a longer distance than average. The identity of this "special partner" interchanges rapidly within the three first-shell water ligands. This is coupled to cleavage of an acceptor-type hydrogen bond. Just before the transition, a partner is selected by an additional translation of the H3O+ moiety in its direction, possibly enabled by loosening of donor-type hydrogen bonds on the opposite side. We monitor the transition in real time, showing how the average structure is converted to a distorted H5O2+ cation constituting the transitional complex for proton hopping between water molecules.