Published in

American Chemical Society, Journal of Physical Chemistry C, 6(116), p. 3935-3943, 2012

DOI: 10.1021/jp210233p

Links

Tools

Export citation

Search in Google Scholar

In-Doped Gallium Oxide Micro-and Nanostructures: Morphology, Structure, and Luminescence Properties

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The influence of indium doping on morphology, structural, and luminescence properties of gallium oxide micro- and nanostructures is reported. Indium-doped gallium oxide micro- and nanostructures have been grown by thermal oxidation of metallic gallium in the presence of indium oxide. The dominant morphologies are beltlike structures, which in many cases are twisted leading to springlike structures, showing that In diffusion in Ga2O3 influences the microstructure shapes. High-resolution transmission electron microscopy has revealed the presence of twins in the belts, and energy-dispersive X-ray spectroscopy in the scanning electron microscopy (SEM) has detected a segregation of indium impurities at the edges of planar structures. These results suggest that indium plays a major role in the observed morphologies and support the assumption of a layer by layer model as growth mechanism. An additional assessment of indium influence on the defect structure has been performed by cathodoluminescence in the SEM, X-ray photoelectron microscopy, and spatially resolved Raman spectroscopy.