Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Computational Biology and Chemistry, (59), p. 67-80, 2015

DOI: 10.1016/j.compbiolchem.2015.09.007

Links

Tools

Export citation

Search in Google Scholar

In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mycoplasma pneumoniae type 2a strain 309 is a simplest known bacterium and is the primary cause of community acquired pneumonia in the children. It mainly causes severe atypical pneumonia as well as several other non-pulmonary manifestations such as neurological, hepatic, hemolytic anemia, cardiac diseases and polyarthritis. The size of M. pneumoniae genome (Accession number-NC_016807.1) is relatively smaller as compared to other bacteria and contains 707 functional proteins, in which 204 are classified as hypothetical proteins (HPs) because of the unavailability of experimentally validated functions. The functions of the HPs were predicted by integrating a variety of protein classification systems, motif discovery tools as well as methods that are based on characteristic features obtained from the protein sequence and metabolic pathways. The probable functions of 83 HPs were predicted successfully. The accuracy of the diverse tools used in the adopted pipeline was evaluated on the basis of statistical techniques of Receiver Operating Characteristic (ROC), which indicated the reliability of the functional predictions. Furthermore, the virulent HPs present in the set of 83 functionally annotated proteins were predicted by using the Bioinformatics tools and the conformational behaviours of the proteins with highest virulence scores were studied by using the molecular dynamics (MD) simulations. This study will facilitate in the better understanding of various drug resistance and pathogenesis mechanisms present in the M. pneumoniae and can be utilized in designing of better therapeutic agents.