Published in

Elsevier, Cell, 2(137), p. 235-246, 2009

DOI: 10.1016/j.cell.2009.01.054

Links

Tools

Export citation

Search in Google Scholar

RETRACTED: VMA21 Deficiency Causes an Autophagic Myopathy by Compromising V-ATPase Activity and Lysosomal Acidification

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

X-linked myopathy with excessive autophagy (XMEA) is a childhood-onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p it is an essential assembly chaperone of the V-ATPase, the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH, which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids, which upregulates the mTOR pathway and mTOR-dependent macroautophagy, resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge together, and vacuolate the cell. Our results uncover macroautophagic overcompensation leading to cell vacuolation and tissue atrophy as a mechanism of disease.