Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Organic Chemistry, 4(77), p. 1833-1842, 2012

DOI: 10.1021/jo202437r

Links

Tools

Export citation

Search in Google Scholar

Selective Synthesis of Cyclic Peroxides from Triketones and H2O2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A method for the assembly of tricyclic structures containing the peroxide, monoperoxyacetal, and acetal moieties was developed based on the acid-catalyzed reaction of β,δ-triketones with H(2)O(2). Tricyclic compounds are formed selectively in yields from 39% to 90% by the reactions with the use of large amounts of strong acids, such as H(2)SO(4), HClO(4), or HBF(4), which act both as the catalyst and as the co-solvent. The reaction is unusual in that, despite the diversity of possible peroxidation pathways giving cyclic compounds and oligomers, the reaction proceeds with high selectivity and produces tricyclic peroxides via the monoperoxidation of the carbonyl groups in the β-positions and the transformation of the δ-carbonyl group into the acetal one. The syntheses are scaled up to tens of grams, and the resulting peroxides can be easily isolated from the reaction mixture.