Published in

Elsevier, International Journal of Hydrogen Energy, 6(39), p. 2431-2445, 2014

DOI: 10.1016/j.ijhydene.2013.11.073

Links

Tools

Export citation

Search in Google Scholar

Progress of international program on hydrogen production with the copper–chlorine cycle

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper highlights and discusses the recent advances in thermochemical hydrogen production with the copper–chlorine (Cu–Cl) cycle. Extended operation of HCl/CuCl electrolysis is achieved, and its performance assessment is conducted. Advances in the development of improved electrodes are presented for various electrode materials. Experimental studies for a 300 cm2 electrolytic cell show a stable current density and production at 98% of the theoretical hydrogen production rate. Long term testing of the electrolyzer for over 1600 h also shows a stable cell voltage. Different systems to address integration challenges are also examined for the integration of electrolysis/hydrolysis and thermolysis/electrolysis processes. New results from experiments for CuCl–HCl–H2O and CuCl2–HCl–H2O ternary systems are presented along with solubility data for CuCl in HCl–H2O mixtures between 298 and 363 K. A parametric study of multi-generation energy systems incorporating the Cu–Cl cycle is presented with an overall energy efficiency as high as 57% and exergy efficiency of hydrogen production up to 90%.