Published in

Elsevier, Journal of Membrane Science, (475), p. 91-100

DOI: 10.1016/j.memsci.2014.10.018

Links

Tools

Export citation

Search in Google Scholar

Simple and effective corrugation of PVDF membranes for enhanced MBR performance

Journal article published in 2014 by Jehad A. Kharraz, M. R. Bilad, Hassan A. Arafat ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Membrane fouling control in membrane bioreactors (MBRs) can be achieved by improving membrane properties. In this study, corrugated flat sheet polyvinylidenefluoride (PVDF) membranes were fabricated, characterized and tested in a lab-scale MBR for improved filterability and fouling resistance. A simple imprinting step was successfully developed and applied as part of the membrane preparation procedure, via phase inversion, to form corrugations on the membrane surface. The corrugation consisted of valleys-and-hills topography, which increased membrane effective surface area (AE) by ~50%. It also increased the membrane mean pore size (PS) as a result of changes in formation mechanism. Both higher AE and larger PS increased membrane permeability to about 5–6 times compared to the non-corrugated membrane, prepared under similar conditions. Surface corrugations reduced membrane fouling propensity as observed from the flux-stepping test and a lab-scale MBR operation, without affecting permeate quality.