Published in

IOP Publishing, Journal of Breath Research, 3(9), p. 031001

DOI: 10.1088/1752-7155/9/3/031001



Export citation

Search in Google Scholar

Secondary electrospray ionization-mass spectrometry and a novel statistical bioinformatic approach identifies a cancer-related profile in exhaled breath of breast cancer patients: A pilot study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Breath analysis represents a new frontier in medical diagnosis and a powerful tool for cancer biomarker discovery due to the recent development of analytical platforms for the detection and identification of human exhaled volatile compounds. Statistical and bioinformatic tools may represent an effective complement to the technical and instrumental enhancements needed to fully exploit clinical applications of breath analysis. Our exploratory study in a cohort of 14 breast cancer patients and 11 healthy volunteers used secondary electrospray ionization-mass spectrometry (SESI-MS) to detect a cancer-related volatile profile. SESI-MS full-scan spectra were acquired in a range of 40-350 mass-to-charge ratio (m/z), converted to matrix data and analyzed using a procedure integrating data pre-processing for quality control, and a two-step class prediction based on machine-learning techniques, including a robust feature selection, and a classifier development with internal validation. MS spectra from exhaled breath showed an individual-specific breath profile and high reciprocal homogeneity among samples, with strong agreement among technical replicates, suggesting a robust responsiveness of SESI-MS. Supervised analysis of breath data identified a support vector machine (SVM) model including 8 features corresponding to m/z 106, 126, 147, 78, 148, 52, 128, 315 and able to discriminate exhaled breath from breast cancer patients from that of healthy individuals, with sensitivity and specificity above 0.9.Our data highlight the significance of SESI-MS as an analytical technique for clinical studies of breath analysis and provide evidence that our noninvasive strategy detects volatile signatures that may support existing technologies to diagnose breast cancer.