Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, FASEB Journal, 1(20), p. 127-129, 2005

DOI: 10.1096/fj.05-4678fje

Links

Tools

Export citation

Search in Google Scholar

Common pathological mechanisms in mouse models for muscular dystrophies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Duchenne/Becker and limb-girdle muscular dystrophies share clinical symptoms like muscle weakness and wasting but differ in clinical presentation and severity. To get a closer view on the differentiating molecular events responsible for the muscular dystrophies, we have carried out a comparative gene expression profiling of hindlimb muscles of the following mouse models: dystrophin-deficient (mdx, mdx(3cv)), sarcoglycan-deficient (Sgca null, Sgcb null, Sgcg null, Sgcd null), dysferlin-deficient (Dysf null, SJL(Dysf)), sarcospan-deficient (Sspn null), and wild-type (C57Bl/6, C57Bl/10) mice. The expression profiles clearly discriminated between severely affected (dystrophinopathies and sarcoglycanopathies) and mildly or nonaffected models (dysferlinopathies, sarcospan-deficiency, wild-type). Dystrophin-deficient and sarcoglycan-deficient profiles were remarkably similar, sharing inflammatory and structural remodeling processes. These processes were also ongoing in dysferlin-deficient animals, albeit at lower levels, in agreement with the later age of onset of this muscular dystrophy. The inflammatory proteins Spp1 and S100a9 were up-regulated in all models, including sarcospan-deficient mice, which points, for the first time, at a subtle phenotype for Sspn null mice. In conclusion, we identified biomarker genes for which expression correlates with the severity of the disease, which can be used for monitoring disease progression. This comparative study is an integrating step toward the development of an expression profiling-based diagnostic approach for muscular dystrophies in humans.