Published in

American Association of Immunologists, The Journal of Immunology, 4(182), p. 2194-2202, 2009

DOI: 10.4049/jimmunol.0802294

Links

Tools

Export citation

Search in Google Scholar

Mycolactone Inhibits Monocyte Cytokine Production by a Posttranscriptional Mechanism

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The virulence and immunosuppressive activity of Mycobacterium ulcerans is attributed to mycolactone, a macrolide toxin synthesized by the bacteria. We have explored the consequence and mechanism of mycolactone pretreatment of primary human monocytes activated by a wide range of TLR ligands. The production of cytokines (TNF, IL-1beta, IL-6, IL-10, and IFN-gamma-inducible protein-10), chemokines (IL-8), and intracellular effector molecules (exemplified by cyclooxygenase-2) was found to be powerfully and dose dependently inhibited by mycolactone, irrespective of the stimulating ligand. However, mycolactone had no effect on the activation of signaling pathways that are known to be important in inducing these genes, including the MAPK and NF-kappaB pathways. Unexpectedly, LPS-dependent transcription of TNF, IL-6, and cyclooxygenase-2 mRNA was found not to be inhibited, implying that mycolactone has a novel mechanism of action and must function posttranscriptionally. We propose that mycolactone mediates its effects by inhibiting the translation of a specific subset of proteins in primary human monocytes. This mechanism is distinct from rapamycin, another naturally occurring immunosuppressive lactone. The current findings also suggest that monocyte-derived cytokine transcript and protein levels may not correlate in Buruli ulcer lesions, and urge caution in the interpretation of RT-PCR data obtained from patient biopsy samples.