Published in

American Physiological Society, AJP - Endocrinology and Metabolism, 6(290), p. E1296-E1303, 2006

DOI: 10.1152/ajpendo.00341.2005

Links

Tools

Export citation

Search in Google Scholar

Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The study was designed to evaluate whether changes in malonyl-CoA and the enzymes that govern its concentration occur in human muscle as a result of physical training. Healthy, middle-aged subjects were studied before and after a 12-wk training program that significantly increased V̇o2 maxby 13% and decreased intra-abdominal fat by 17%. Significant decreases (25–30%) in the concentration of malonyl-CoA were observed after training, 24–36 h after the last bout of exercise. They were accompanied by increases in both the activity (88%) and mRNA (51%) of malonyl-CoA decarboxylase (MCD) in muscle but no changes in the phosphorylation of AMP kinase (AMPK, Thr172) or of acetyl-CoA carboxylase. The abundance of peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α (PGC-1α), a regulator of transcription that has been linked to the mediation of MCD expression by PPARα, was also increased (3-fold). In studies also conducted 24–36 h after the last bout of exercise, no evidence of increased whole body insulin sensitivity or fatty acid oxidation was observed during an euglycemic hyperinsulinemic clamp. In conclusion, the concentration of malonyl-CoA is diminished in muscle after physical training, most likely because of PGC-1α-mediated increases in MCD expression and activity. These changes persist after the increases in AMPK activity and whole body insulin sensitivity and fatty acid oxidation, typically caused by an acute bout of exercise in healthy individuals, have dissipated.