Published in

American Association of Immunologists, The Journal of Immunology, 4(176), p. 2299-2306, 2006

DOI: 10.4049/jimmunol.176.4.2299

Links

Tools

Export citation

Search in Google Scholar

Thymocyte Negative Selection Is Mediated by Protein Kinase C- and Ca2+-Dependent Transcriptional Induction of Bim

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The processes of positive and negative selection in the thymus both determine the population of T cells that will enter the peripheral immune system and eliminate self-reactive T cells by apoptosis. Substantial evidence indicates that TCR signal intensity mediates this cell fate choice: low-intensity signals lead to survival and differentiation, whereas high-intensity signals generated by self-Ag lead to cell death. The molecular mechanism by which these graded signals are converted to discrete outcomes is not understood. Positive selection requires the Ca(2+)-dependent phosphatase calcineurin, whereas negative selection requires the proapoptotic Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim). In this study, we investigated the regulation of Bim expression and the role of Ca(2+) in mediating negative selection. Our results show that transcription is necessary for both negative selection and Bim induction. Surprisingly, we also found that Ca(2+) is necessary for Bim induction. Induction of bim transcription appears to involve protein kinase C, but not calcineurin, JNK, p38 MAPK, or MEK. These results localize the decision point in positive vs negative selection to a step downstream of Ca(2+) signaling and suggest that negative selection signals induce Ca(2+)-dependent bim transcription through PKC.