Published in

EDP Sciences, EPJ Web of Conferences, (66), p. 07012, 2014

DOI: 10.1051/epjconf/20146607012

Links

Tools

Export citation

Search in Google Scholar

Lithium and boron burning S(E)-factor measurements at astrophysical energies via the Trojan Horse Method

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The residual amount of light elements lithium, beryllium and boron (LiBeB) abundances in stellar atmospheres has been largely accepted as one of the most powerful probes for understanding stellar structure and mixing phenomena. They are in fact gradually destroyed at different depths of stellar interior mainly by (p,α), thus their fate in stars is an incomparable tool for studying mixing processes. In order to avoid extrapolation procedures on the available direct S(E)-factor measurements, the Trojan Horse Method (THM) has been developed, allowing one to measure the bare nucleus S(E)-factor for astrophysically relevant reactions without experiencing Coulomb penetrability effects. Here, a summary on the recent 6,7Li and 11B TH investigations will be given and the corresponding results discussed.