Published in

Wiley, Journal of Leukocyte Biology, 5(80), p. 1018-1030, 2006

DOI: 10.1189/jlb.0306150

Links

Tools

Export citation

Search in Google Scholar

Monocyte-derived macrophages and myeloid cell lines as targets of HIV-1 replication and persistence

Journal article published in 2006 by Edana Cassol, Massimo Alfano ORCID, Priscilla Biswas, Guido Poli
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract HIV infection of mononuclear phagocytes (MP), mostly as tissue macrophages, is a dominant feature in the pathogenesis of HIV disease and its progression to AIDS. Although the general mechanism of infection is not dissimilar to that of CD4+ T lymphocytes occurring via interaction of the viral envelope with CD4 and a chemokine receptor (usually CCR5), other features are peculiar to MP infection. Among others, the long-term persistence of productive infection, sustained by the absence of substantial cell death, and the capacity of the virions to bud and accumulate in intracellular multivescicular bodies (MVB), has conferred to MP the role of “Trojan horses” perpetuating the chronic state of infection. Because the investigation of tissue macrophages is often very difficult for both ethical and practical reasons of accessibility, most studies of in vitro infection rely upon monocyte-derived macrophages (MDM), a methodology hampered by inter-patient variability and lack of uniformity of experimental protocols. A number of cell lines, mostly Mono Mac, THP-1, U937, HL-60, and their derivative chronically infected counterparts (such as U1 and OM-10.1 cell lines) have complemented the MDM system of infection providing useful information on the features of HIV replication in MP. This article describes and compares the most salient features of these different cellular models of MP infection by HIV.