Published in

American Institute of Physics, Applied Physics Letters, 13(96), p. 133302

DOI: 10.1063/1.3377791

Links

Tools

Export citation

Search in Google Scholar

Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We theoretically investigate the enhancement of optical absorption in thin-film organic solar cells in which the top transparent electrode is partially substituted by a periodic metallic grating. We show that the grating can result in broadband optical absorption enhancement for TM-polarized light, due to the large field enhancement in the vicinity of the strips of the grating, associated with the excitation of plasmonic modes. The overall optical absorption in the organic layers can be greatly enhanced up to ∼50 % for such solar cell structures.