Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Brain Research, 1(1087), p. 105-113, 2006

DOI: 10.1016/j.brainres.2006.02.119

Links

Tools

Export citation

Search in Google Scholar

Cannabinoid system in the budgerigar brain

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cannabinoid receptor density and cannabinoid receptor-mediated G protein stimulation were studied by autoradiographic techniques throughout the budgerigar (Melopsittacus undulatus) brain. The maximal CB(1) receptor density value (using [(3)H]CP55,940 as radioligand) was found in the molecular layer of the cerebellum (Mol), and high binding values were observed in the nucleus taeniae amygdalae (TnA), nucleus preopticus medialis, and nucleus pretectalis. The highest net-stimulated [(35)S]GTPgammaS binding values induced by the selective CB(1) receptor agonist WIN55,212-2 were observed in the nucleus paramedianus internus thalami, and high values of [(35)S]GTPgammaS binding were observed in the TnA, Mol, arcopallium dorsale and arcopallium intermedium. The distribution data suggest that in the budgerigar, as previously indicated in mammals, cannabinoid receptors may be related to the control of several brain functions in the motor system, memory, visual system, and reproductive behavior. The discrepancies between the cannabinoid receptor densities and the cannabinoid receptor-mediated stimulation found in several budgerigar brain nuclei support the hypothesis, previously described for mammals, of the existence of different G(i/o) protein populations able to associate with the cannabinoid receptors, depending on the brain structure, and could reflect the relative importance that cannabinoid transmission could exerts in each cerebral area.