Published in

New and Emerging Proteomic Techniques, p. 51-70

DOI: 10.1385/1-59745-026-x:51

Links

Tools

Export citation

Search in Google Scholar

Chemical proteomics profiling of proteasome activity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proteolysis is a key mechanism for protein homeostasis in living cells. This process is effected by different classes of proteases. The proteasome is one of the most abundant and versatile proteases, bearing three different proteolytic active sites. The proteasome plays an important role in essential biological pathways such as antigen presentation, signal transduction, and cell-cycle control feedback loops. The aim of this work is to design novel chemical strategies for capturing, detection, identification, and quantification--in one word, profiling--the active protease fractions of interest, in cells of different phenotypes. Here, a set of chemistry-based functional proteomics techniques is demonstrated by profiling the multi-catalytic protease activities of the proteasome. Importantly, functional profiling is complementary to expression level profiling and is an indispensable parameter for better understanding of mechanisms underlying biological processes.