Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Dynamics of Atmospheres and Oceans, 1-3(48), p. 16-45

DOI: 10.1016/j.dynatmoce.2008.10.004

Links

Tools

Export citation

Search in Google Scholar

Fast data assimilation using a nonlinear Kalman filter and a model surrogate: An application to the Columbia River estuary

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A fast and adjoint-free nonlinear data assimilation (DA) system was developed to simulate 3D baroclinic circulation in estuaries, leveraging two recently developed technologies: (1) a nonlinear model surrogate that executes forward simulation three orders of magnitude faster than a forward numerical circulation code and (2) a nonlinear extension to the reduced-dimension Kalman filter that estimates the state of the model surrogate. The noise sources in the Kalman filter were calibrated using empirical cross-validation and accounted for errors in model and model forcing.The DA system was applied to assimilate in situ measurements of water levels, salinities, and temperatures in simulations of the Columbia River estuary. To validate the DA results, we used a combination of cross-validation studies, process-oriented studies, and tests of statistical and dynamical consistency. The validation studies showed that DA improved the representation of several important processes in the estuary, including nonlinear tidal propagation, salinity intrusion, estuarine residual circulation, heat balance, and response of the estuary to coastal winds.