Published in

Elsevier, Organic Electronics, (24), p. 254-262, 2015

DOI: 10.1016/j.orgel.2015.06.003

Links

Tools

Export citation

Search in Google Scholar

Enabling high-efficiency organic light-emitting diodes with a cross-linkable electron confining hole transporting material

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wet-process enables flexible, large area-size organic devices to be fabricated cost-effectively via roll-to-roll manufacturing. However, wet-processed devices often show comparatively poor performance due to the lack of solution-process feasible functional materials that exhibit robust mechanical properties. We demonstrate here a cross-linkable material, 3,6-bis(4-vinylphenyl)-9-ethylcarbazole (VPEC), to facilitate the injection of hole and meanwhile effectively confine electron to realize, for examples, high efficiency organic light-emitting diodes, especially at high luminance. The VPEC shows a hole mobility of 1 × 10−4 cm2 V−1 s−1 and a triplet energy of 2.88 eV. Most importantly, the VPEC not only works for devices containing low band-gap red or green emitters, but also for the counterpart with high band-gap blue emitter. With the electron confining hole transporting material, the power efficiency of a studied red device, at 1000 cd m−2 for example, is increased from 8.5 to 13.5 lm W−1, an increment of 59%, and the maximum luminance enhanced from 13,000 to 19,000 cd m−2, an increment of 46%. For a high triplet energy blue emitter containing device, it is increased from 6.9 to 8.9 lm W−1, an increment of 29%, and the maximum luminance enhanced from 9000 to 11,000 cd m−2, an increment of 22%.