Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, BBA - Bioenergetics, 11(1817), p. 2072-2086, 2012

DOI: 10.1016/j.bbabio.2012.06.620

Links

Tools

Export citation

Search in Google Scholar

The mitochondrial permeability transition pore (PTP) — An example of multiple molecular exaptation?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The mitochondrial permeability transition (PT) is a well-recognized phenomenon that allows mitochondria to undergo a sudden increase of permeability to solutes with molecular mass ≤ 1500 Da, leading to organelle swelling and structural modifications. The relevance of PT relies on its master role in the manifestation of programmed cell death (PCD). This function is performed by a mega-channel (in some cases inhibited by cyclosporin A) named permeability transition pore (PTP), whose function could derive from the assembly of different mitochondrial proteins. In this paper we examine the distribution and characteristics of PTP in mitochondria of eukaryotic organisms so far investigated in order to draw a hypothesis on the mechanism of its evolution. As a result, we suggest that PTP may have arisen as a new function linked to a multiple molecular exaptation of different mitochondrial proteins, even though they could nevertheless still play their original role. Furthermore, we suggest that the early appearance of PTP could have had a crucial role in the establishment of endosymbiosis in eukaryotic cells, by the coordinated balancing of ATP production by glycolysis (performed by the primary phagocyte) and oxidative phosphorylation (accomplished by the endosymbiont). Indeed, we argue on the possibility that this new energetic equilibrium could have opened the way to the subsequent evolution toward metazoans.