Published in

Wiley, ChemPhysChem, 6(13), p. 1569-1575, 2012

DOI: 10.1002/cphc.201100896

Links

Tools

Export citation

Search in Google Scholar

Single-Walled Carbon Nanotubes as Scaffolds to Concentrate DNA for the Study of DNA-Protein Interactions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Genomic DNA in bacteria exists in a condensed state, which exhibits different biochemical and biophysical properties from a dilute solution. DNA was concentrated on streptavidin-covered single-walled carbon nanotubes (Strep-SWNTs) through biotin-streptavidin interactions. We reasoned that confining DNA within a defined space through mechanical constraints, rather than by manipulating buffer conditions, would more closely resemble physiological conditions. By ensuring a high streptavidin loading on SWNTs of about 1 streptavidin tetramer per 4 nm of SWNT, we were able to achieve dense DNA binding. DNA is bound to Strep-SWNTs at a tunable density and up to as high as 0.5 mg mL(-1) in solution and 29 mg mL(-1) on a 2D surface. This platform allows us to observe the aggregation behavior of DNA at high concentrations and the counteracting effects of HU protein (a histone-like protein from Escherichia coli strain U93) on the DNA aggregates. This provides an in vitro model for studying DNA-DNA and DNA-protein interactions at a high DNA concentration.