Published in

The Company of Biologists, Journal of Experimental Biology, 7(215), p. 1192-1198, 2012

DOI: 10.1242/jeb.063503

Links

Tools

Export citation

Search in Google Scholar

Structural characterisation of the N-glycan moiety of the barnacle settlement-inducing protein complex (SIPC)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

SUMMARYMany barnacle species are gregarious and their cypris larvae display a remarkable ability to explore surfaces before committing to permanent attachment. The chemical cue to gregarious settlement behaviour – the settlement-inducing protein complex (SIPC) – is an α2-macroglobulin-like glycoprotein. This cuticular protein may also be involved in cyprid reversible adhesion if its presence is confirmed in footprints of adhesive deposited during exploratory behaviour, which increase the attractiveness of surfaces and signal other cyprids to settle. The full-length open-reading frame of the SIPC gene encodes a protein of 1547 amino acids with seven potential N-glycosylation sites. In this study on Balanus amphitrite, glycan profiling of the SIPC via hydrophilic interaction liquid chromatography with fluorescence detection (HILIC-fluorescence) provided evidence of predominantly high mannose glycans (M2–9), with the occurrence of monofucosylated oligomannose glycans (F(6)M2–4) in lower proportions. The high mannose glycosylation found supports previous observations of an interaction with mannose-binding lectins and exogenous mannose increasing settlement in B. amphitrite cypris larvae. Transmission electron microscopy of the deglycosylated SIPC revealed a multi-lobed globular protein with a diameter of ∼8 nm. Obtaining a complete structural characterisation of the SIPC remains a goal that has the potential to inspire solutions to the age-old problem of barnacle fouling.