Published in

Springer Nature [academic journals on nature.com], Oncogene, 54(24), p. 8076-8079, 2005

DOI: 10.1038/sj.onc.1208949

Links

Tools

Export citation

Search in Google Scholar

Melphalan-induced apoptosis in multiple myeloma cells is associated with a cleavage of Mcl-1 and Bim and a decrease in the Mcl-1/Bim complex

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Multiple myeloma (MM) is a rapidly fatal plasma-cell malignancy that evolves mainly in the bone marrow. Melphalan is widely used to treat patients with MM but as yet its mechanisms of action are poorly documented. In the current study, we demonstrate that melphalan induces a drastic downregulation of Mcl-1L, Bcl-x(L) and BimEL in human melphalan-sensitive myeloma cells while the most potent proapoptotic isoforms, BimL and S, are affected to a lesser extent. Moreover, Mcl-1L and BimEL disappearance is associated with the generation of proapoptotic cleaved forms generated by a caspase cleavage. In myeloma cells, we have previously shown that Mcl-1 neutralizes the proapoptotic function of Bim and therefore, prevents the activation of death effectors. In this study, we demonstrate that melphalan disrupts the Mcl-1/Bim complex whereas the Bcl-2/Bim complex is not modified. The disappearance of full length Mcl-1 allows the release of Bim isoforms, particularly L and S, which can exert their proapoptotic function and leads to Bax activation and cytochrome c release. Thus, we can hypothesize that the cleaved 26 kDa proapoptotic Mcl-1 and the 19 and 12 kDa of Bim, generated during melphalan treatment could contribute to the amplification loop of apoptosis.