Published in

Wiley, Advanced Energy Materials, 3(5), p. 1401185, 2014

DOI: 10.1002/aenm.201401185

Links

Tools

Export citation

Search in Google Scholar

Integrated Design of Organic Hole Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of triphenylamine-based small molecule organic hole transport materials (HTMs) with low crystallinity and high hole mobility are systematically investigated in solid-state dye-sensitized solar cells (ssDSCs). By using the organic dye LEG4 as a photosensitizer, devices with X3 and X35 as the HTMs exhibit desirable power conversion efficiencies (PCEs) of 5.8% and 5.5%, respectively. These values are slightly higher than the PCE of 5.4% obtained by using the state-of-the-art HTM Spiro-OMeTAD. Meanwhile, transient photovoltage decay measurement is used to gain insight into the complex influences of the HTMs on the performance of devices. The results demonstrate that smaller HTMs induce faster electron recombination in the devices and suggest that the size of a HTM plays a crucial role in device performance, which is reported for the first time.