Published in

Turpion Limited, Quantum Electronics, 8(44), p. 707-712, 2014

DOI: 10.1070/qe2014v044n08abeh015486

Links

Tools

Export citation

Search in Google Scholar

Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth.