Springer Verlag, Lecture Notes in Computer Science, p. 365-376
DOI: 10.1007/978-3-642-24769-9_27
Full text: Download
This paper presents a Multi-Robot Task Allocation (MRTA) system, implemented on a RoboCup Small Size League team, where robots participate of auctions for the available roles, such as attacker or defender, and use Heuristically Accelerated Reinforcement Learning to evaluate their aptitude to perform these roles, given the situation of the team, in real-time. The performance of the task allocation mechanism is evaluated and compared in different implementation variants, and results show that the proposed MRTA system significantly increases the team performance, when compared to pre-programmed team behavior algorithms.