Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1035), 2007

DOI: 10.1557/proc-1035-l02-11

Links

Tools

Export citation

Search in Google Scholar

Synthesis, characterization and growth mechanism of ZnO/TiO2 nanohybrid arrays

Journal article published in 2007 by Chun Cheng ORCID, Ning Wang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn this paper, we demonstrate a simple method to synthesize ZnO/TiO2 nanohybrid structure arrays based on the site-specific deposition of titanium oxide on ZnO nanorods under the hydrothermal condition. We have found that the polarity of the ZnO (0001) surface plays an important role in the formation of the nanohybrid structures. Each ZnO nanorod is assembled with one TiO2 particle only at the (0001) end surface. High-resolution transmission electron microscopy study shows that the TiO2 particles that are connected to ZnO nanorods are amorphous. By annealing at different temperatures, these particles can be transformed to nanocrystals of the anatase and rutile phases, which have a particular relationship with the orientation of ZnO nanorods and good interface structures. This work provides a rational approach to the assembly of complex nanohybrids using the intrinsic properties of ZnO nanocrystals.