Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 2(8), p. e56931, 2013

DOI: 10.1371/journal.pone.0056931

Links

Tools

Export citation

Search in Google Scholar

DNA Methylation Dynamics in Blood after Hematopoietic Cell Transplant

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Epigenetic deregulation is considered a common hallmark of cancer. Nevertheless, recent publications have demonstrated its association with a large array of human diseases. Here, we explore the DNA methylation dynamics in blood samples during hematopoietic cell transplant and how they are affected by pathophysiological events during transplant evolution. We analyzed global DNA methylation in a cohort of 47 patients with allogenic transplant up to 12 months post-transplant. Recipients stably maintained the donor's global methylation levels after transplant. Nonetheless, global methylation is affected by chimerism status. Methylation analysis of promoters revealed that methylation in more than 200 genes is altered 1 month post-transplant when compared with non-pathological methylation levels in the donor. This number decreased by 6 months post-transplant. Finally, we analyzed methylation in IFN-c, FASL, IL-10, and PRF1 and found association with the severity of the acute graft-versus-host disease. Our results provide strong evidence that methylation changes in blood are linked to underlying physiological events and demonstrate that DNA methylation analysis is a viable strategy for the study of transplantation and for development of biomarkers. Copyright: ß 2013 Rodriguez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.