The Australian Water Resources Assessment system Landscape model (AWRA-L) aims to produce interpretable water balance component estimates covering all of Australia, and as much as possible agree with water balance observations, including point gauging data and satellite observations. The opportunities to evaluate AWRA-L water balance predictions in Australia are severely limited by the limited amount of field data (e.g. flux tower observations, soil moisture measurements) and the limited range of environments and conditions for which observations are available. Opportunities exist to further evaluate and improve AWRA-L model predictions by using global collations of in situ soil moisture, flux tower, and streamflow data available from the broader scientific community. To evaluate AWRA-L against these observations, global input data are required. We reviewed and compared results of published studies about meteorological data that could be used to parameterise AWRA-L globally. Review findings include: • Satellite-based rainfall performs better during warm seasons and in the tropics, although overestimating total rainfall. Reanalysis data outperforms satellite-based rainfall during winter and in higher latitudes. Gauge bias-corrected TRMM 3B42V6 reduces observed bias in many areas globally. A blending approach may enhance rainfall quality estimates on a global scale, using rainfall from reanalysis in higher latitudes and satellite estimates such as TRMM 3B42V6 in mid-latitudes. • Global monthly, annual and climatological surface temperature anomalies from reanalysis had very similar values. At the daily scale, compared daily maximum and minimum temperature probability density functions from ERA-40, JRA-25 and NCEP-DOE were dissimilar with large regional differences, but overall no reanalysis showed more skill than the other two when compared against regional observational temperature data.