Published in

2009 IEEE Symposium on Artificial Life

DOI: 10.1109/alife.2009.4937694

Links

Tools

Export citation

Search in Google Scholar

Self-adaptive multi-robot construction using gene regulatory networks

Proceedings article published in 2009 by Hongliang Guo, Yan Meng, Yaochu Jin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, infinite richness, and limited availability of information. Gene regulatory networks (GRNs) are models of genes and gene interactions at the expression level. In this paper, inspired by the biological organisms and GRNs models, a distributed multi-robot self-construction method is proposed. By using this method, a multi-robot system can self-construct to different predefined shapes, and self-reorganize to adapt to dynamic environments. Various case studies have been conducted in the simulation, and the simulation results demonstrate the efficiency and convergence of the proposed method.