Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Great Lakes Research, (40), p. 102-116, 2014

DOI: 10.1016/j.jglr.2014.04.002

Links

Tools

Export citation

Search in Google Scholar

Accommodating environmental thresholds and extreme events in hydrological models: A Bayesian approach

Journal article published in 2014 by Christopher Wellen, George B. Arhonditsis ORCID, Tanya Long, Duncan Boyd
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Extreme events appear to play an important role in pollutant export and the overall functioning of watershed systems. Because they are expected to increase in frequency as urbanization and recent climate change trends continue, the development of techniques that can effectively accommodate the behavior of watersheds during extreme events is one of the challenges of the contemporary modeling practice. In this regard, we present a Bayesian framework which postulates that the watershed response to precipitation occurs in distinct states. Precipitation depth above a certain threshold triggers an extreme state, which is characterized by a qualitatively different response of the watershed to precipitation. Our calibration framework allows us to identify these extreme states and to characterize the different watershed behavior by allowing parameter values to vary between states. We applied this framework to SWAT model implementations in two creeks in the Hamilton Harbour watershed of Redhill Creek, an urban catchment, and Grindstone Creek, an agricultural one. We found that our framework is able to coherently identify watershed states and state-specific parameters, with extreme states being characterized by a higher propensity for runoff generation. Our framework resulted in better model fit above the precipitation threshold, although there were not consistent improvements of model fit overall. We demonstrate that accommodating threshold-type of behavior may improve the use of models in locating critical source areas of non-point source pollution.