Published in

Elsevier, Neurochemistry International, 2(39), p. 83-93

DOI: 10.1016/s0197-0186(01)00024-9

Links

Tools

Export citation

Search in Google Scholar

Ricin toxicity to microglial and monocytic cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microglial cells, like macrophages, are very sensitive to ricin, a galactose-specific toxic lectin belonging to the family of ribosome-inactivating proteins. This toxin can be taken up by most cells through the binding of its B chain to galactose-containing molecules on the cell membrane. In macrophagic cell types it can be internalised also by mannose receptors which are present on the surface of these cells. Endocytosis of the toxin by either pathway was evaluated by ricin toxicity to primary cultures of rat microglial cells and to a microglial N11 cell line in the presence or absence of lactose and mannan, which compete for the endocytosis via the ricin lectin chain or cellular mannose receptors, respectively. Results were compared with those obtained in cultures of mouse macrophages, human monocytes, and a monocytic JM cell line. All cultures were protected from ricin toxicity more by lactose than by mannan, indicating that ricin endocytosis via its lectin B chain is prevalent over that mediated by cellular mannose receptors. However, a partial protection by mannan was observed in all cases but not-stimulated N11 cells, either in the form of direct protection or of significant additional protection over that afforded by lactose. Mannose receptor expression by N11 cells was negative before, and positive after, treatment with endotoxin, as assessed by the specific binding of 125I-mannose-bovine serum albumin. Moreover, a partial protection from ricin toxicity by mannan was induced in the N11 microglial line after stimulation, consistently with an inducible expression of the mannose receptor by activated cells switched towards a microglial phenotype.