Published in

Indian Academy of Sciences, Bulletin of Materials Science, 7(34), p. 1345-1350, 2011

DOI: 10.1007/s12034-011-0326-7

Links

Tools

Export citation

Search in Google Scholar

Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles

Journal article published in 2011 by Binu P. Jacob, Ashok Kumar, R. P. Pant, Sukhvir Singh, E. M. Mohammed
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nickel ferrite nanoparticles of very small size were prepared by sol-gel combustion and co-precipitation techniques. At the same annealing temperature sol-gel derived particles had bigger crystallite size. In both methods, crystallite size of the particles increased with annealing temperature. Sol-gel derived nickel ferrite particles were found to be of almost spherical shape and moderate particle size with a narrow size distribution; while co-precipitation derived particles had irregular shape and very small particle size with a wide size distribution. Nickel ferrite particles produced by sol-gel method exhibited more purity. Sol-gel synthesized nanoparticles were found to be of high saturation magnetization and hysteresis. Co-precipitation derived nickel ferrite particles, annealed at 400°C exhibited superparamagnetic nature with small saturation magnetization. Saturation magnetization increased with annealing temperature in both the methods. At the annealing temperature of 600°C, co-precipitation derived particles also became ferrimagnetic.