Published in

American Society for Cell Biology, Molecular Biology of the Cell, 1(23), p. 213-224

DOI: 10.1091/mbc.e11-05-0415

Links

Tools

Export citation

Search in Google Scholar

RNA-related nuclear functions of human Pat1b, the P-body mRNA decay factor

Journal article published in 2011 by Aline Marnef, Dominique Weil ORCID, Nancy Standart
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The evolutionarily conserved Pat1 proteins are P-body components recently shown to play important roles in cytoplasmic gene expression control. Using human cell lines, we demonstrate that human Pat1b is a shuttling protein whose nuclear export is mediated via a consensus NES sequence and Crm1, as evidenced by leptomycin B (LMB) treatment. However, not all P-body components are nucleocytoplasmic proteins; rck/p54, Dcp1a, Edc3, Ge-1, and Xrn1 are insensitive to LMB and remain cytoplasmic in its presence. Nuclear Pat1b localizes to PML-associated foci and SC35-containing splicing speckles in a transcription-dependent manner, whereas in the absence of RNA synthesis, Pat1b redistributes to crescent-shaped nucleolar caps. Furthermore, inhibition of splicing by spliceostatin A leads to the reorganization of SC35 speckles, which is closely mirrored by Pat1b, indicating that it may also be involved in splicing processes. Of interest, Pat1b retention in these three nuclear compartments is mediated via distinct regions of the protein. Examination of the nuclear distribution of 4E-T(ransporter), an additional P-body nucleocytoplasmic protein, revealed that 4E-T colocalizes with Pat1b in PML-associated foci but not in nucleolar caps. Taken together, our findings strongly suggest that Pat1b participates in several RNA-related nuclear processes in addition to its multiple regulatory roles in the cytoplasm.