Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Geochimica et Cosmochimica Acta, 2(75), p. 629-644, 2011

DOI: 10.1016/j.gca.2010.10.017

Links

Tools

Export citation

Search in Google Scholar

Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil – Implication for a late supernova injection into the solar system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Systematic variations in 54Cr/52Cr ratios between meteorite classes ( and ) point to large scale spatial and/or temporal isotopic heterogeneity in the solar protoplanetary disk. Two explanations for these variations have been proposed, with important implications for the formation of the Solar System: heterogeneous seeding of the disk with dust from a supernova, or energetic-particle irradiation of dust in the disk. The key to differentiating between them is identification of the carrier(s) of the 54Cr anomalies. Here we report the results of our recent NanoSIMS imaging search for the 54Cr-rich carrier in the acid-resistant residue of the CI chondrite Orgueil. A total of 10 regions with extreme 54Cr-excesses (δ54Cr values up to 1500‰) were found. Comparison between SEM, Auger and NanoSIMS analyses showed that these 54Cr-rich regions are associated with one or more sub-micron (typically less than 200 nm) Cr oxide grains, most likely spinels. Because the size of the NanoSIMS primary O− ion beam is larger than the typical grain size on the sample mount, the measured anomalies are lower limits, and we estimate that the actual 54Cr enrichments in three grains are at least 11 times Solar and in one of these may be as high as 50 times Solar. Such compositions strongly favor a Type II supernova origin. The variability in bulk 54Cr/52Cr between meteorite classes argues for a heterogeneous distribution of the 54Cr carrier in the solar protoplanetary disk following a late supernova injection event. Such a scenario is also supported by the O-isotopic distribution and variable abundances in different planetary materials of other presolar oxide and silicate grains from supernovae.