Elsevier, International Journal of Hydrogen Energy, 34(38), p. 14743-14749, 2013
DOI: 10.1016/j.ijhydene.2013.09.057
Full text: Download
Cermet membranes composited of Ni and doped barium cerate have been widely studied for hydrogen separation; however, their practical application is limited primarily by the relatively low permeation rate and instability of doped barium cerate in H2O and CO2 containing gases. Here we report our findings on the development of a thin-film cermet membrane consisting of Ni and BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb), supported on a porous Ni–BZCYYb substrate. High fluxes of 1.12 and 0.49 ml min−1 cm−2 have been demonstrated at 900 °C and 700 °C, respectively, when hydrogen was used as the feed gas on one side and N2 as the sweep gas on the other side. Most importantly, the high-performance membrane can be easily fabricated by a cost-effective particle-suspension coating/co-firing process, offering great promise for large scale hydrogen separation applications.