Published in

Springer (part of Springer Nature), Archives of Virology, 2(143), p. 321-332

DOI: 10.1007/s007050050289

Links

Tools

Export citation

Search in Google Scholar

Programmed cell death in the pathogenesis of rabbit hemorrhagic disease

Journal article published in 1998 by C. Alonso ORCID, J. M. Oviedo, J. M. Martín Alonso, E. Díaz, J. A. Boga, F. Parra ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rabbit hemorrhagic disease is a rapidly lethal infection caused by a calicivirus, characterized by acute liver damage and disseminated intravascular coagulation (DIC). Following morphological criteria and using a specific in situ labeling technique, we have found that liver cell death induced upon infection is due to apoptosis, and that programmed cell death is a constant feature in rabbits experimentally infected with RHDV. The process affected mainly hepatocytes, but also macrophages and endothelial cells presented morphologic hallmarks of apoptosis, expressing all these cell types viral antigens as determined by immunohistochemistry. The occurrence of programmed cell death was correlated with the appearance of the RHDV induced pathology in tissues by DNA fragmentation detection in situ. Hepatocyte apoptosis produced extensive parenchymal destruction causing a lethal, acute fulminant hepatitis that is characteristic of RHD. Apoptosis of intravascular monocytes and endothelial cell was observed together with fibrin thrombi in blood vessels. Since apoptotic cells are known sites of enhanced procoagulant activity, apoptosis of these cell populations might constitute a first step in the pathogenesis of DIC and a common pathway to other viral hemorrhagic fevers. In conclusion, apoptosis in RHD may be determinant in the development of the pathogenesis of this disease.