Elsevier, Physics Letters A, 6(242), p. 349-354
DOI: 10.1016/s0375-9601(98)00176-5
Full text: Download
An earthquake model is introduced, in which the brittle crust is treated as a two-dimensional system of many blocks divided by faults, and the mechanical behavior of the faults is described by the Burridge-Knopoff stick-slip model. The coherent system naturally evolves into a self-organized critical state. Some universal scaling laws of seismicity, such as the Gutenberg-Richter law with the b value in agreement with the observational result and the fractal feature of fault patterns, are reproduced. Some ambiguity in simple cellular automata models is also solved.